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Big Data
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Safety Analysis Data
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High-resolution Big data in real-time Al applications in traffic safety

Infrastructure Data Prediction
Probe Vehicle Data
ITS Data
: _ -
Signal Timing
Weather
CAV Neuron-based model Tree-based model
Etc - (e.g, CNN, LSTM) (e, XGBOOST)
 Investigate nonlinear relationship between variables
New Type of Data Sources - Handle large data
Image « Handle new data sources (high-dimension, time-series)
Video Imbalance data issue
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crash Narrative ;‘E * Generative Adversarial
loT 4 Crash Networks (GAN)
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Al-based Data Collection

Data Source

Traffic

* Emerging sensors: Camera,
Parameters

LIDAR, Sonar, Radar, UWB;

e National wide/worldwide
data: Telematics data,
CCTVs, Google Street View,
Satellite Images, Crash
Report

Weather

Vulnerable

Road User
Exposure New Data

Advantage Special

Events

* Generate new type of data
* Reduce the cost/improve

the efficiency for data Safety Evaluation

colgzct(ijon Conflict/ Near Miss  Road S afety Rating
° Wi
ldc Loverage Crash Severity Countermeasure

Crash Contributing Effectiveness
Factors



Al-based Data Collection SafeMerr g o
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* Using state-of-the-art computer vision algorithms to — L
detect:
* 3-level rain condition [heavy rain, light rain, no rain]
* road surface condition [wet, dry]
* Obtaining real-time, high-frequency, granular

observation of rain and road surface condition
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Smart Corridor
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Al-based Data Collection

Detect and predict vehicles’ maneuvers
p

Global Positioning System (GPS) Modeling

Cellular positioning

Accelerometers

Magnetometers

% Gyroscopes

Smart Phone

Identify vehicles’ movements including left turn; right turn; through;
and U turn;
Random forest method provides the best identification result and

could classity vehicles’ movement with high accuracy;
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UCF SST System Overview
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Data Processing




Data Pipeline

Camera Calibration

Detection

Tracking

Land-Mark

6/2/2020 11:46 AM

Input video

Optical flow

6/2/2020 11:46 AM

One stage

Two stage

« MaskRCNN | |
¢ Fast-RCNN
* Faster-RCNN

* openPose
* PIFPAF
¢ COCO-Pose

Short term tracking(frame t+1)

* CSRT
* Center-Track

long term tracking(frame t+n)

* RE-ID
* Trajectory prediction

Traffic Data

*  Volume, Speed & Headway estimation,
vehicle classification
. Real-time volume, speed
estimation
. Vehicle classification
(passenger car, motorcycle,

bus, truck)
. Historical trajectories
extraction
* Vulnerable road user count & speed

estimation
* Pedestrian & cyclist
* Intersections
* Arterials
+ Behaviors & Human factors
. Crossing behavior
. Turning behavior
. Cyclist gesture
. Age
. Gender
. Pedestrian step analysis
» Conflict diagnostics based on conflicts of
all road users including drivers,
pedestrian, cyclists
* Abnormal events identification and
management (e.g., adverse weather,
hurricane)
* Countermeasure effectiveness
estimation/before-after analysis
* Violation/Events identification (e.g. crash,
queue)
* -support first responder




Automated Roadway Conflicts Identification System (A.R.C.1.S)

UCF SST computer vision platform



About ARCIS

This system, applicable in particular to

road traffic analysis, uses

drone/Unmanned Aerial Vehicle (UAV)

videos. The systems can generate the

following types of outputs using

drone/UAV video data:

* Trajectory data of road users including
vehicles and vulnerable road users

* Road users' classifications

* Traffic statistics (e.g., volume, speed)

 Safety indicators (e.g., Post-
Encroachment Time (PET))

\)

DJI Phantom 4
1920 x1080 resolution

30 FPS
120 feet
23 minutes




Automated Roadway Conflicts Identification System (A.R.C.I.S)
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Automated Roadway Conflicts Identification System (A.R.C.I.S)

Pixel to pixel manner automated safety diagnostics and conflict identification system

* Vehicle Length and Width
e vehicle trajectories

l

. identify conflicts based on
surrogate safety measures

Count
Volume
TTC

PET
Avg.Speed

Conflicts Heatmap

Drone
Video Feed Performance: 0.4 s/f




A.R.C.I.S Cases
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Near Miss Event Detection System (N.M.E.D.S)

UCF SST computer vision platform



Near Miss Event Detection System (N.M.E.D.S)
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Near Miss Event Detection System(N.M.E.D.S)

Pedestrian

Red-light running prediction

21397 11/02/2019, 12:49:30:401

Pedestrian and bicycle counts
Jaywalk detection




Near Miss Event Detection System (N.M.E.D.S)
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Near Miss Event Detection System (N.M.E.D.S)
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Near Miss Event Detection System (N.M.E.D.S)

Queue
Input CCTV Video
Queue length
o = =y Ry Accumulated weighted frame
« g * Removing motion object by
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N.M.E.D.S Cases

Traffic Parameters

01/03/2019 15:53:07

Abnormal event

09-10-2019 Tue 05:00:58

Conflict analysis

Countermeasure effectiveness

Complete Streets




Prediction of Pedestrian Crossing Intention
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Proactive Pedestrian Detection System

« The -evaluation experiments were
conducted at three different
intersections

« Nearly 1,000 observations were
collected for the evaluation

« The results suggested the proactive Intersection Gemini Blvd " Intersection Gemini Blvd Inéer)section Research Pkwy
detect pedestrians in zones of interest
with a high accuracy A framework of collision warning system
 The evaluation results also apply to . -
Presence of pedestrians No pedestrian
other areas such as segments and other 388 11 399

zones of Intersections 79 484 563
467 495 962
Sensitivity=388/467=0.831 Specificity=484/495=0.978
Accuracy = (388+484)/ (388+11+79+484) = 0.906




Prediction of Pedestrians’ Red-Light Crossing Behaviors Using Pose Estimation
and Machine Learning

Modeling Results on the Test Dataset

Experiment Results Vol L SWM | RP T eem [ xoBT

luati Walking Walking Walking Walking
> F del d | d: (eva tug o (red-light | Average | (red-light | Average | (red-light | Average | (red-light | Average

* Support Vector Machine (SVM)
« Random Forest (RF)
» Gradient Boosting (GBM)

» eXtreme Gradient Boosting (XGBT)

» RF model achieves the best
performance with the AUC
value as 0.870.

» The model can be further used
In the 12V (infrastructure-to-
vehicle) system to better warn
drivers.

lllustration of warning messages about
pedestrians’ red-light crossing with the connected
vehicle technology 28



P2V warning — Pedestrians attempt to cross the road at segments

A pedestrian attempted to cross
the road at a segment

During nighttime, it is difficult
for drivers to observe the
existence of pedestrians

Smartphones could send the
locations and statuses of the
pedestrian and vehicle to the
server

The server determines whether
a potential conflict could exist
and send the warning to both
the pedestrian and driver

Scenario of the conflict between a
jaywalking pedestrian and a vehicle

29



P2V warning — Pedestrians attempt to cross the road at segments (Jaywalking)

 The pedestrian and driver could receive the warning message at the same time

* The driver could receive the warning before he saw the pedestrian

All Sensor Data

The driver’s view The pedestrian’s view 30



P2V warning — A pedestrian is behind a car

The driver could receive the warning that the pedestrian ahead who is behind another car

The driver’s view The pedestrian’s view

31



Short Term Crash Prediction Models

d Develop short-term crash prediction models to estimate the safety performance of roadways considering
geometric, operational, and exposure characteristics for different.

d Include more precise measures of exposure other than AADT, and factors such as speed and speed variability
to help predict crashes for varied periods of time/aggregation levels (AM peak, PM peak, off peak, night-
time, weekday hourly, and weekend houtly).

d Four models for every sub-scenario, including total crashes (IKABCO), fatal and injury crashes (KABC), fatal
and severe injury crashes (KA), and property damage only crashes (O).

Segment Types
(basic, merge, diverge, weaving, and ramp)

Reversible Lane (RL) Work Zone (W2) Ramp Metering (RM) Variable (Advisory) Speed Limit Adverse Weather



Microscopic and Real-time Data




Example of the Developed Crash Prediction Models

[ The following models are developed for Basic Urban segments - fatal and injury crashes (KABC)

AM Peak

(Intercept)

log_volume

log_AvgSpeed

StdSpeed

Number of Lanes (Ref. 4)
Lanes6 8

Lanes10_

State (Ref. AZ_KS_MI_VA)
FL_IL

CO_OR_TX

MAE (test)
MSE (test)
MAD (test)

Estimate
-0.400
0.331
-0.953
0.092
0.629
1.174
-0.735
-0.476
0.669
-1.276

Pr(>[zl)

0.484
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

7910.100

0.082
0.371
0.708
0.489

Daytime Off-Peak

(Intercept)

log_volume
log_AvgSpeed

StdSpeed

Number of Lanes (Ref. 4)
Lanes6 8

Lanes10

State (Ref. AZ_MI_OR_VA)
FL_IL_KS

CO_TX

GA

MD_WA_ Wi

p?

MAE (test)
MSE (test)
MAD (test)

Estimate

-0.862
0.319
-0.760
0.091
0.710
1.153
-0.820
-0.519
0.621
-1.225

Pr(>z])

0.055
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

9254.500

0.085
0.462
0.962
0.608

AADT

Estimate Pr(>|z|)

(Intercept) 0.079
log_volume 0.433
log_AvgSpeed -0.863
Number of Lanes (Ref. 4) -

Lanes6_8 0.662

Lanes10_ 1.353

State (Ref. IL_KS_MI_OR_VA) -

-0.509
0.858
-0.815
-1.089

AZ CO_TX

0.841
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

19633.200
0.065

MAE (test)
MSE (test)
MAD (test)

1.936
15.617
2.715




afety Data Initiative (SDI) tool

') U.S. Department of Transportation ABOUTDOT v  PRIORITIES v CONNECT v  Q f v Y |

Solving for Safety

The Challenge

Submissions

Prizes

Innovation Agents

Important Dates

Data & Models to Support Solvers
View Past Webinars >
Eligibility, Rules, Criteria >

FAQ's, IP, Federal Register Notice >

Solving for Safety Submissions

ing for Saf sualization Challen pproximately a 3-stage challenge that ides 1 month for
ideation development, 1 month for proof of concept development, and 2 months for full working analytical
visualization | development

S
é STAGE i

A

The University of Central Florida (UCF) lected as the Challenge winner for d oping a full working ana

Stage 11l Winner

visualization tool. Le CF's tool could help reduce serious crashes on the Nation's road and rail system by
viewing their Chall

University of Central Florida's Real-Time Crash Risk Visualization Tools for
Traffic Safety Management
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REAL-TIME CRASH RISK VISUALIZATION

for Operators

At Sormrento Sasford 0 Maytown
Mt Dora Sagfor '
(= Pennichaw
27] = 5T ) Midway I
' e Heathrogv
Tangefine
® (2] Alaqua Lakes; ———
Okahumpka ekiw
/\%z. s e Yalah r ‘,‘
1 4, Z¢ 00 29 ot
Freeway Arterial b 200 tat
fowey-in-The-Hills
Top 5 High-Risk Arterial Segments : L’ Loggwogd
S Qi Apopka Truck Comner
Arterial 10 Littl
. Sguth Apopka bl X 3ol s
1013_2 | (5] ol i s
%’%' | Chpluota |
1104_3 | Llf'i%g Ferndale Ut e
0o ® % Eatonvill : 4
— . Hiawapsee - N
] [33] ‘ J’cr Montverde 2 Wiptg R
C %
S 10061 | % P
Recrintte 2
o Mascotte Minneola o’"@ ‘ﬁ 330 o @
w o
Wing 5Fden ey
2004 2 ' Groveland—@ — A A :
Clermont = R o
uo Figem boreta ettt o
1006_3 | . \ s
0 0.2 0.4 0.6 0.8 ® A Corfway ,

Rlsk Score ' winaermere M {
al S ake iterngationyl :"7
ta Doctpr PR o 152 @

M Real-Time Status - o
vwewahoiee
MWAliamsbui
- [33] f
8 Pro-Active Traffic Mgmt -
3 N Lake Hart
4
H

Withla

Four Comneys
Stetration

Green Pond

Kissimmee

Narcoossee



REAL-TIME CRASH RISK VISUALIZATION

for Operators
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Speed Management




DIFFERENCE BETWEEN OPERATING SPEED AND TARGET SPEED

Lk 7
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Study Roadways
by Speed
bt Difference
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-1 : Speed Difference < -5 z@ne
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Pal By
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Esri, HERE, Garmin, (c) OpenStreeti ap contributors, and the GIS user
community.



DIFFERENCE BETWEEN OPERATING SPEED AND TARGET SPEED

Speed Differences Visualization
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Some countermeasures could be implemented to reduce the difference between
target speed and operating speed: reducing posted speed limit, reducing the inside
shoulder width, constructing curb and gutter outside shoulder type, reducing
average block length, increasing the width of sidewalks, and installing more

signalized intersections.

The results suggested adopting different posted speed limits for the daytime and
nigh-time periods to reduce the difference between operating speed and target
speed. This will achieve target speed, eases the mobility and provide safer roads

for all users in that context (drivers, pedestrians, bicyclists, and public transit users).

UCF




Vision for Transportation

More Proactive (but data intensive) approaches / Real-Time

Ever richer information

« Smartphones, sensors, onboard vehicle hardware, provide continuous data
« Traffic status, weather conditions in real-time

Better operation and safety

 Bottleneck detection in real-time
 Crash risk evaluation and prediction in real-time

More accurate prediction

» Formation of congestion, queue length, congestion duration
» Crash-prone conditions: unstable traffic flow, adverse weather

Timely communication
» Connected Vehicles
* Media: smartphone, DMS, radio
 Suggested countermeasures: trip planning, route choice, travel time calculation, VSL, speed advice, etc.

« Smart Cities’ research

 FUTURe CITy Initiative: Fostering Smart Urban Transformation and Ubiquitous Resilience with Connected
Infrastructure and Technology

42
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